Nanoscratch Characterization of GaN Epilayers on c- and a-Axis Sapphire Substrates
نویسندگان
چکیده
In this study, we used metal organic chemical vapor deposition to form gallium nitride (GaN) epilayers on c- and a-axis sapphire substrates and then used the nanoscratch technique and atomic force microscopy (AFM) to determine the nanotribological behavior and deformation characteristics of the GaN epilayers, respectively. The AFM morphological studies revealed that pile-up phenomena occurred on both sides of the scratches formed on the GaN epilayers. It is suggested that cracking dominates in the case of GaN epilayers while ploughing during the process of scratching; the appearances of the scratched surfaces were significantly different for the GaN epilayers on the c- and a-axis sapphire substrates. In addition, compared to the c-axis substrate, we obtained higher values of the coefficient of friction (μ) and deeper penetration of the scratches on the GaN a-axis sapphire sample when we set the ramped force at 4,000 μN. This discrepancy suggests that GaN epilayers grown on c-axis sapphire have higher shear resistances than those formed on a-axis sapphire. The occurrence of pile-up events indicates that the generation and motion of individual dislocation, which we measured under the sites of critical brittle transitions of the scratch track, resulted in ductile and/or brittle properties as a result of the deformed and strain-hardened lattice structure.
منابع مشابه
The effect of substrate on high-temperature annealing of GaN epilayers: Si versus sapphire
We have studied the effects of rapid thermal annealing at 1300 °C on GaN epilayers grown on AlN buffered Si 111 and on sapphire substrates. After annealing, the epilayers grown on Si display visible alterations with craterlike morphology scattered over the surface. The annealed GaN/Si layers were characterized by a range of experimental techniques: scanning electron microscopy, optical confocal...
متن کاملوابستگی انرژی گذارهای اپتیکی در نانوساختارهای چاههای کوانتومی GaN/AlGaN به پهنای سد و چاه کوانتومی
Internal polarizations field which take place in quantum structures of group-III nitrides have an important consequence on their optical properties. Optical properties of wurtzite AlGaN/GaN quantum well (QW) structures grown by MBE and MOCVD on c-plane sapphire substrates have been investigated by means of photoluminescence (PL) and time resolved photoluminescence (TRPL) at low-temperature. PL ...
متن کاملRefractive index of erbium doped GaN thin films
GaN is an excellent host for erbium (Er) to provide optical emission in the technologically important as well as eye-safe 1540 nm wavelength window. Er doped GaN (GaN:Er) epilayers were synthesized on c-plane sapphire substrates using metal organic chemical vapor deposition. By employing a pulsed growth scheme, the crystalline quality of GaN:Er epilayers was significantly improved over those ob...
متن کاملOptical properties of GaN pyramids
Picosecond time-resolved photoluminescence ~PL! spectroscopy has been used to investigate the optical properties of GaN pyramids overgrown on hexagonal-patterned GaN~0001! epilayers on sapphire and silicon substrates with AlN buffer layers. We found that: ~i! the release of the biaxial compressive strain in GaN pyramids on GaN/AlN/sapphire substrate led to a 7 meV redshift of the spectral peak ...
متن کاملGRADED InGaN BUFFERS FOR STRAIN RELAXATION IN GaN/InGaN EPILAYERS GROWN ON SAPPHIRE
Graded InGaN buffers were employed to relax the strain arising from the lattice and thermal mismatch in GaN/InGaN epilayers grown on sapphire. An enhanced strain relaxation was observed in GaN grown on a stack of five InGaN layers, each 200 nm thick with the In content increased in each layer, and with an intermediate thin GaN layer, 10 nm thick inserted between the InGaN layers, as compared to...
متن کامل